Mechanical Engineering Seminar (U-Grad) Special Topics in Mechano-Informatics II (Grad) "Biomechanics of Human Movement" Academic Year 2014 Dr. Emel Demircan

Course Information

Instructor:

 Dr. Emel Demircan Contact: emel@ynl.t.u-tokyo.ac.jp Office Hours and Location: Friday 16:30-17:30, Engineering Building 2, Room 82D1

Assistants:

- Tianwei Zhang
 Contact: zhang@ynl.t.u-tokyo.ac.jp
 Office Hours and Location: Tuesday 14:00-15:00, Engineering Building 2, Room 82C1
- Kazunari Takeichi Contact: takeichi@ynl.t.u-tokyo.ac.jp
 Office Hours and Location: Friday 16:30-17:30, Engineering Building 2, Room 82C1

Course Information

Course Grading:

Attendance: 40% Homeworks: 30% Final Project Presentation: 30%

Homeworks:

Please submit each homework electronically to **emel@ynl.t.u-tokyo.ac.jp** by its deadline.

4/25: HW1 out 5/2: HW1 due, 5pm 5/9: HW2 out 5/23: HW2 due, 5pm 6/6: HW 3 out 6/27: HW 3 due, 5pm

Course Information

Final Project:

Students form teams and each team selects one topic from the list below:

- Exoskeleton Robots & Rehabilitation Robotics
- Human Performance Augmentation
- Animation and Simulation
- Human & Humanoid in Aging Society
- Human & Humanoid Skills/Cognition
- Human Motion Tracking
- Gait Analysis & Rehabilitation
- Human Musculoskeletal Modeling
- Socially Assistive Robots
- Natural Motion Generation in Humanoid Robotics
- Motion Analysis for Workspace Ergonomics
- Children Gait and Posture Rehabilitation
- Real-time Feedback Modalities for Motion Training

Schedule

4/18: Introduction

4/25: Spatial Descriptions, Kinematics, Introduction to Biomechanical Simulation

5/2: Skeletal Muscle Structure, Force Generation, Musculoskeletal Geometry

5/9: Production of Movement

5/23: Motion Tracking Techniques

6/6: Inverse Dynamics, Control, Operational Space Formulation

6/27: Human Articulated Body Model, Dynamics, and Motion Control

7/4: Advanced Topics in Human Motion Analysis, Student Presentations

Today

- Why to Study Human Motion?
- How to Study Human Motion? Multi-Disciplinary Research
- Components and Functions of the Musculoskeletal System
- Examples of Applications

Understanding and Applying Human Motion to Robots

 To observe and understand how humans move. To apply similar strategies to robots.

Today

• Why to Study Human Motion?

- How to Study Human Motion? Multi-Disciplinary Research
- Components and Functions of the Musculoskeletal System
- Examples of Applications

Synthetic Motions through Simulations

 to design new rehabilitation techniques

LIRMM, Universite de Montpellier II

Synthetic Motions through Simulations

- to design new rehabilitation techniques
- to evaluate injuries

Synthetic Motions through Simulations

- to design new rehabilitation techniques
- to evaluate injuries
- for ergonomic analysis and design

Synthetic Motions through Simulations

- to design new rehabilitation techniques
- to evaluate injuries
- for ergonomic analysis and design
- to synthesize realistic interactions in computersimulated environment

Today

- Why to Study Human Motion?
- How to Study Human Motion? Multi-Disciplinary Research
- Components and Functions of the Musculoskeletal System
- Examples of Applications

Biomechanical Tools

Human Musculoskeletal Models

- Multi-body, rigid, tree-like branching structure
- Upper and lower body models

. 0 *

Human Musculoskeletal Models adapted from: Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp E.L., Rosen, J.M. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering, vol. 37, pp. 757-767, 1990. and: Holzbaur, K.R.S., Murray, W.M., Delp, S.L. A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control. Annals of Biomedical Engineering, vol 33, pp 829–840, 2005.

Biomechanical Tools

Human Musculoskeletal Models

- Multi-body, rigid, tree-like branching structure
- Upper and lower body models
- Different levels of complexity

Joint	Degree of freedom	Туре	Function	
Hip	3	Ball and socket	Adduction/ abduction Flexion/extension Rotation	
Knee	1	Revolute	Flexion/extension	
Ankle	1	Revolute	Dorsiflexion/plantar flexion	
Subtalar	1	Revolute	Eversion/inversion	
Tarsal	1	Revolute	Flexion/extension	
Lumbar	3	Ball and socket	Ext./bend./rot.	
Shoulder	3	Ball and socket	Adduction/ abduction Flexion/extension rotation	
Elbow	1	Revolute	Flexion/extension	
Wrist	3	Revolute	Flexion/extension Ulnar/radial deviations Pronation/ supination	

Experimental Tools Sensing Human Motion

- Accurate 3D position data Motion Capture (mocap)
- Easy to use, continuous whole-body sensing
- Synchronize with contact force, muscle activity data

History of Human Movement Science

1543: Andreas Vesalius publishes the first illustrated systematic anatomical atlas of the human body. 1877: Muybridge settles the bet with a single photographic plate showing Occident, Stanford's own racehorse, with all feet in the air.By 1878, Muybridge had successfully photographed a horse in fast motion using a series of twenty-four cameras

1894: Etienne Jules Marey invents the first slow motion camera

1872: former Governor of California Leland Stanford, had taken a position on a popularly-debated question of the day: whether all four of a horse's hooves left the ground at the same time during a gallop. 1887: Etienne Jules Marey invents

the "chronophotograph"

"No natural phenomenon can be understood without carefully considering how it emerged" N. A. Bernstein, "On Dexterity and Its Development", 1996.

Robotics Dynamics and Control

Balance

Internal Constraints Self Collision Local Obstacles

Contact

Task

Posture

Robotics Dynamics and Control

Balance

Internal Constraints Self Collision Local Obstacles

Contact

Task

Posture

Robotics

Actuation and Dynamics Characterization Tools

- Robotics provide methods to assess the dynamic performance of multidegrees of freedom manipulators (Khatib and Burdick, 1987)
- Dynamics can be reflected at the wrist of robotics systems using the feasible set of operational space accelerations

Neuromuscular Library Multidisciplinary Research

Physiology | Model | Dynamics | Control | Analysis

Today

- Why to Study Human Motion?
- How to Study Human Motion? Multi-Disciplinary Research
- Components & Functions of the Musculoskeletal System
- Examples of Applications

• Skeleton

- Appendicular & Axial
- Mineral Storage
- Protection of Vital Organs
- Joints
 - Linkage
- Muscles
 - Force Production
 - Support

• Skeleton

- Appendicular & Axial
- Mineral Storage
- Protection of Vital Organs

• Joints

- Provide linkage
- Human Motion involves rotation of body segments about their joint axes
- The force produced by a muscle is coupled with its moment arm to generate torque about the joint that it crosses
- Torques are always determined with respect to a specific axis of rotation

wikipedia.org

- Muscles
 - Force Production
 - Support

wikipedia.org

•

Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Today

- Why to Study Human Motion?
- How to Study Human Motion? Multi-Disciplinary Research
- Components & Functions of the Musculoskeletal System
- Examples of Applications

Biomechanics of Human Movement Applications

Human Motion Characterization

Whole-Body Muscular Effort Physio-Mechanical Advantage

Ergonomics and Occupational Health

AnyBody

Which handle bar height results in the minimal load on the body?

Experiment – Throwing

Professional Football Player

- Motion Capture
- Force Plate

3-D Dynamic Simulation

3-D Dynamic Simulation Professional Throwing

Dynamic Motion Analysis

Khatib, O., Demircan, E., De Sapio, V., Sentis, L., Besier, T., Delp, S., "Robotics-based Synthesis of Human Motion", Journal of Physiology, 2009 Demircan, E., Khatib, O., Wheeler, J., and Delp, S., "Reconstruction and EMG-informed Control, Simulation and Analysis of Human Movement for Athletics: Performance Improvement and Injury Prevention", IEEE EMBC, Minneapolis, 2009

Optimal Throwing?

Experiment – Golf Swing

College-level Elite Golf Player

- Motion Capture
- Force Plate

3-D Dynamic Simulation of Golf Swing

Subject-Specific Motion Analysis

Gait: Experiment and Simulation

Healthy Male Free Speed (1.75m/s)

- Motion Capture
- Force Plate
- Electromyography

23DOF actuated by92 muscle-tendon units

Gait: Experiment and Simulation

Gait: Experiment and Simulation

Experiment - Gait

- Contact forces were added in the dynamics
- Activation pattern scaled the muscle capacities
- Subject's dynamics was reflected at the center of mass

Muscle Activations during Normal Gait (1.75m/s)

Subject-Specific Gait Analysis

$$\ddot{x} = J(q)A(q)^{-1}(L^T m_{max}a - g(q) - J_{c_1}^T F_{ext_1} - J_{c_2}^T F_{ext_2})$$

percent gait cycle

Results	Our findings	Liu et al. 2006	Neptune et al. 2004	Liu et al. 2008	
Gluteus medius, vasti, hamstrings, gastrocnemius, soleus and dorsiflexors are important modulators of accelerations	>	>	>	>	

Demircan, E. and Khatib, O., "Constraint-Consistent Analysis of Muscle Force Contributions to Human Gait", Advances in Robot Kinematics, Springer, 13th International Symposium, Innsbruck, Austria, June 2012

gluteus medius biceps femoris long head biceps femoris short head sartorius tensor fasciae latae gracilis gluteus max iliacus psoas rectus femoris vasti medial gastrocnemius soleus tibialis anterior

Subject-Specific Motion Analysis Real-time Motion Dynamics, Task-based

- Decoupled control of human motion, postural behaviors, contact and additional constraints
- **Real-time** motion dynamics
- Subject's dynamics at any operational point
- Real-time feedback (visual, haptic)

Musculoskeletal Disorders Crouch vs. Normal Gait

Professor Scott Delp – Department of Bioengineering Professor Jessica Rose - Stanford Children Gait Hospital Department of Orthopeadic Surgery, School of Medicine

Reeducation of Musculoskeletal Disorders

Reeducation of Stroke Patients

Universite de Montpellier II LIRMM, France

COP

Post-Stroke subject

Rehabilitation Reaching & Grasping

Stanford Children Gait Hospital Department of Orthopeadic Surgery, School of Medicine

Athletics and Sports Medicine Injury Prevention in Sport

In a Collaboration with: Footwear Technological Institute, INESCOP, Mallorca

Understanding and Applying Human Motion to Robots

 To observe and understand how humans move. To apply similar strategies to robots.

Today

- Why to Study Human Motion?
- How to Study Human Motion? Multi-Disciplinary Research
- Components and Functions of the Musculoskeletal System
- Examples of Applications

Next Week (4/25)

- Spatial Descriptions, Kinematics, Introduction to Biomechanical Simulation
 - Please bring your laptop (windows)
 - Please download "OpenSim 3.2" with GUI from *simtk.org*
- Project teams & topics selection due (instructor office hour)
- Feel free to contact the instructor and the assistants for your questions
- Have a Nice Weekend!

Symposium on Biomechanics of Human Movement

Graduate Program for Social ICT Global Creative Leaders JSPS Invitation Fellowship Program for Research in Japan (Short S)

April 19th, Saturday 9.15am-17.30pm Yayoi Auditorium

http://www.ynl.t.u-tokyo.ac.jp/~emel/symposium/home.html