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Lecture 6: Humanoid Modeling and Control 

Katsu Yamane 

kyamane@disneyresearch.com 

Goals 

• Introduce a method for automatically simplifying 
dynamics models for humanoid robots 

 

• Introduce model identification methods for humanoid 
robots 

 

• Discuss the right level of details for robot modeling 

Automatic Model Reduction for 
Humanoid Robots 

[Yamane 2012] 

Motivation 

Building simplified models for humanoid control 

1. Choose a simple mechanical system 

2. Derive and linearize the equation of motion 

3. Define state and input mapping 

Motivation 

Issues 

• Accuracy 

• Model parameters 

• State/input mapping 

• Other models/configuration 

Contributions 

 

Automatic derivation of simplified dynamics models 

– Given: nominal pose, contact constraints, reduced DOF 

 

 

Unified state and input mapping 

– Use the same code for any simplified model 
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Related Work 

• Humanoid robots: inverted pendulum [Kajita 1995], cart-
table [Kajita 2003+, IP with reaction wheel *Lee 2007+ … 

– Based on intuition 

– Comparison to the original dynamics [Goswami 2008] 

• Model reduction in structural mechanics and fluid 
dynamics [Hyland 1983; Lall 2003], graphics [Treuille 
2006; James 2003] 

– Thousands of degrees of freedom but only a few inputs 

– Often assume stable system 

Simplification Process 

Full equation of motion Contact constraints 

Full constrained dynamics model 

Linear full constrained dynamics model 

Linear reduced dynamics model 

linearization 

dimensionality reduction 

State-space model 

𝑛 joints 𝑚 independent constraints 

𝑘 DOF (𝑘 ≪ 𝑛) 

2𝑘 states 

Simplification Process 

Full equation of motion Contact constraints 

Full constrained dynamics model 

Linear full constrained dynamics model 

Linear reduced dynamics model 

linearization 

dimensionality reduction 

State-space model 

𝑛 joints 𝑚 independent constraints 

𝑘 DOF (𝑘 ≪ 𝑛) 

2𝑘 states 

Full Model with Contacts 

𝑀 𝜃 𝜃 + 𝑐 𝜃, 𝜃 + 𝑔 𝜃 = 
𝑆𝑇𝜏 + 𝐽𝐶

𝑇 𝜃 𝑓𝐶 

𝐽𝐶𝜃 + 𝐽 𝐶𝜃 = 0 

𝜃 = Φ 𝜃 𝑆𝑇𝜏 + 𝜙 𝜃, 𝜃  

Full equation of motion Contact constraints 

Full constrained dynamics model 

Φ = 𝑀−1 −𝑀−1𝐽𝐶
𝑇 𝐽𝐶𝑀

−1𝐽𝐶
𝑇 −1

𝐽𝐶𝑀
−1 

𝜙 = −𝑀−1𝐽𝐶
𝑇 𝐽𝐶𝑀

−1𝐽𝐶
𝑇 −1

𝐽 𝐶𝜃 − Φ 𝑐 + 𝑔  

(𝑀 > 0, symmetric) 𝜃 ∈ ℝ𝑛 

(Φ ≥ 0, symmetric) 

Linearization 

Full constrained dynamics model 

Linear full constrained dynamics model 

𝜃 = Φ 𝜃 𝑆𝑇𝜏 + 𝜙 𝜃, 𝜃  

𝛿𝜃 = Φ0𝑆
𝑇𝛿𝜏 + Γ𝛿𝜃 + Λ𝛿𝜃  

Φ0 = Φ 𝜃0  

𝜃 = 𝜃0 + 𝛿𝜃, 𝜃 = 0 + 𝛿𝜃 , 𝜃 = 0 + 𝛿𝜃  

Simplification Process 

Full equation of motion Contact constraints 

Full constrained dynamics model 

Linear full constrained dynamics model 

Linear reduced dynamics model 

linearization 

dimensionality reduction 

State-space model 

𝑛 joints 𝑚 independent constraints 

𝑘 DOF (𝑘 ≪ 𝑛) 

2𝑘 states 
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Dimensionality Reduction 

 

 

 

 

 

 

What to maintain after reduction? 

– Somewhat task-dependent 

– Here we choose kinetic energy 

Linear full constrained dynamics model 

Linear reduced dynamics model 𝑘 DOF (𝑘 ≪ 𝑛) 

𝑀 𝑞 + 𝐶 𝑞 + 𝐺 𝑞 = 𝑢 

𝛿𝜃 = Φ0𝑆
𝑇𝛿𝜏 + Γ𝛿𝜃 + Λ𝛿𝜃  ? 

𝑞 ∈ ℝ𝑘 : generalized coordinates 
of the simplified model 

Kinetic Energy of the Constrained System 

• Need inertia matrix, but Φ0 is not invertible 

• Singular value decomposition: Φ0 = 𝑈Σ𝑈𝑇 

 Singular values 

 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑙> 𝜎𝑙+1 = 𝜎𝑙+2 = ⋯ = 𝜎𝑛 = 0 

 

 

 
Σ  

Φ 0 = 𝑈 Σ 𝑈 𝑇 

Inertia matrix: Φ 0
−1 = 𝑈 Σ −1𝑈 𝑇 

Kinetic energy: 𝑇 =
1

2
𝛿𝜃 𝑇Φ 0

−1𝛿𝜃  
𝑈 ∈ ℝ𝑛×𝑙 

Φ 0 > 0 

Approximating Kinetic Energy 

1

𝜎𝑙
≥

1

𝜎𝑙−1
≥ ⋯ ≥

1

𝜎𝑙−𝑘+1
≥ ⋯ ≥

1

𝜎1
 

Φ 0
−1 = 𝑈 Σ −1𝑈 𝑇 

State mapping 𝑞 = 𝑈 𝑇𝛿𝜃  or 𝛿𝜃 = 𝑈 𝑞 

Inertia matrix 𝑀 = Σ −1 

𝑇 =
1

2
𝛿𝜃 𝑇𝑈 Σ −1𝑈 𝑇𝛿𝜃  

𝑈 ∈ ℝ𝑛×𝑘 

𝑇 =
1

2
𝑞 𝑇Σ −1𝑞  

𝑇 =
1

2
𝛿𝜃 𝑇𝑈 Σ −1𝑈 𝑇𝛿𝜃  

Singular values 

Top 𝑘 singular values 

Input Mapping 

Consider the power applied by the joint torques 

– Full model: 𝛿𝜃 𝑇𝑆𝑇𝜏 

 

– Simplified model: 𝑞 𝑇𝑢 

 

→ 𝑢 = 𝑈 𝑇𝑆𝑇𝛿𝜏 

 

State mapping 

= 𝑞 𝑇𝑈 𝑇𝑆𝑇𝛿𝜏 

Computing 𝐺  and 𝐶  

𝑀 𝑞 + 𝐶 𝑞 + 𝐺 𝑞 = 𝑢 

 

• Compute inverse dynamics at many static poses 𝜃0 + Δ𝜃𝑖 
and compute joint torque 𝜏𝑖 = 𝜏0 + 𝛿𝜏𝑖 

• 𝑞 = 𝑈 𝑇Δ𝜃𝑖, 𝑢 = 𝑈 𝑇𝑆𝑇𝛿𝜏𝑖 

 → 𝐺 𝑈 𝑇Δ𝜃𝑖 = 𝑈 𝑇𝑆𝑇𝛿𝜏𝑖  

• Compute the 𝐺  that best fits the samples 

 

Example 

1st singular vector 

38 DOF humanoid model (32 joints + 6 DOF pelvis) 
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Example 

2nd 3rd 4th 5th 

Control 

• Input (joint torque) mapping: 𝑢 = 𝑈 𝑇𝑆𝑇𝛿𝜏 

• Number of inputs: 𝑘 (simplified) < 𝑛 − 6 (original) 

 

• Optimization 

– Cost function: input mapping error, desired joint 
trajectories 

– Constraints: dynamic, friction, and COP 

Simulation 

• 2 or 5 DOF models for each task 

– 2 DOF models don’t work in some tasks, possibly due to 
unmodeled dynamics 

– Various nominal poses 

• Balance controller: linear quadratic regulator (LQR) 

 𝐽 = ∫0
∞

𝑞𝑇 𝑞 𝑇
𝑄1 0
0 𝑄2

𝑞
𝑞 + 𝑢𝑇𝑅𝑢 𝑑𝑡 

 𝑄1 = 100,𝑄2 = 1 × 10−3, 𝑅 = 1 × 10−2 

 

Simulation: Pushed from Back 

200N for 0.1s 

Pushed at Right Shoulder 

Twist not modeled in the 2DOF model 

2DOF model cannot maintain balance 

Changing to a New Pose 

Simulation of 
simplified model 

States in 
full simulation 



7/23/2013 

5 

Changing to a New Pose 

Simulation of 
simplified model 

States in 
full simulation 

2DOF model cannot maintain balance 

Combine Multiple Controllers 

Contact 

No contact 
Manually designed nominal poses and contact constraints 

Combine Multiple Controllers Summary 

• Automatically generate simplified models of humanoid 
robots with contacts given: 

– Nominal configuration 

– Contact constraints 

– Reduced DOF 

• State/input mapping 

– State mapping uses the same code for any model 

– Input mapping is redundant and allows other control 
objectives 

Model Identification 

[Yamane 2011] 

Target Parameters 

• Kinematic model: joint angle sensor offsets 

– Potentiometer’s zero angle drift 

 

• Inertial model: link mass and center of mass 

– Total weight from CAD model ~60kg 

– Actual weight ~90kg 

– Larger discrepancy than electric robots due to hose and oil 

– Omit moments of inertia 
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Kinematic Parameters 

• Existing solutions 

– External measurements (e.g., motion capture): 
cumbersome to set up, not always available 

– Calibration jig: not enough samples for complex robots 

Kinematic Parameters 

• Our solution 

– IMU for global information 

– Easily enforced kinematic constraints (e.g., flat on floor, 
parallel feet) 

 

 

Kinematic Parameters 

Before 

After 

Kinematic Parameters 

• Cost function error vs. 
sample interval 

Inertial Parameters 

• Equation of motion with inertial parameters 𝜙: 

𝑀 𝜃,𝜙 𝜃 + 𝑐 𝜃, 𝜃 , 𝜙 + 𝑔 𝜃, 𝜙 = 𝑆𝑇𝜏 + 𝐽𝑐
𝑇 𝜃 𝑓𝑐 

 
𝐹 𝜃, 𝜃 , 𝜃 , 𝜙 = 𝑆𝑇𝜏 + 𝐽𝑐

𝑇 𝜃 𝑓𝑐 

 

• 𝐹 is a linear function of 𝜙 [Mayeda et al. 1984] 

𝐹 𝜃, 𝜃 , 𝜃 , 𝜙 = 𝐴 𝜃, 𝜃 , 𝜃 𝜙 

 

Regressor 

Identification 

• Existing solutions 

– Collect samples of 𝜃𝑘 , 𝜃 𝑘 , 𝜃 𝑘, 𝜏𝑘 , 𝑓𝑐𝑘 

– Concatenate all samples: 𝐴 𝜙 = 𝐹 = 𝑆 𝑇𝜏 + 𝐽 𝑐
𝑇𝑓 𝑐  

→ 𝜙 = 𝐴 #𝐹 

 

• Issues with humanoid robots 

– All 𝜏 and 𝑓𝑐  may not be available 

– Difficult to derive a symbolic representation 

– Difficult to obtain enough excitation 
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Partial Force Measurement 

• Generalization of [Ayusawa et al. 2009]: identification only 
from contact force measurement 

• Divide into available and unavailable measurements 

𝐹 = 𝐻 𝑎
𝑇

𝜏 𝑎
𝑓 𝑐𝑎

+ 𝐻 𝑢
𝑇

𝜏 𝑢
𝑓 𝑐𝑢

 

• 𝑁 𝑢: null space basis of 𝐻 𝑢
𝑇 

𝐹 𝑁 = 𝑁 𝑢𝐹 = 𝑁 𝑢𝐻 𝑎
𝑇

𝜏 𝑎
𝑓 𝑐𝑎

 

• 𝑁 𝑢𝐴 𝜙 = 𝐹 𝑁: only includes measurable forces 

 

[Mistry et al. 2009] 

Computing the Regressor 

• Strictly identifiable 𝜙 is a linear combination of actual 
inertial parameters (mass, local center of mass) 

• Difficult to obtain 𝜙 for humanoid robots due to 
complexity 

• We use standard inertial parameters instead and 
compute the regressor by numerical inverse dynamics 
and finite difference of inertial parameters 

Estimation 

• Difficult to obtain enough excitation 

– Robot needs to balance 

– Results in invalid parameters (negative mass etc.) 

 

• Ideas 

– Ignore unreliable parameter space: omit small singular 
values of 𝐴 and use pseudo inverse (“least square”) 

– Prevent inconsistent results: gradient-based optimization 
with lower and upper bounds (“gradient”) 

 

 

Results 

• Test data: 3 trials for “teapot” tracking; 1 for 
identification, 2 for cross-validation 

• Torque information is not available for position-
controlled joints (upper body) 

• Parameters: with (LS) and without (L) symmetry 
constraint 

Results 

n/a: Resulted in negative mass 

Force estimation errors 

Results 

Cross validation Direct validation 

Vertical force of base 
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Humanoid Robot Control in 
Dynamic Environments 

[Zheng and Yamane Humanoids 2011] 

 Balancing Control on a Cylinder 

 Motion Decomposition 

sagittal plane 

frontal plane 

3-D motion  two 2-D motions rolling angle 𝜃0  foot rotation 𝜃1 ankle rotation 𝜃2 

 Simplified Model in Sagittal Plane 

length change 𝑙 

ankle torque 𝜏2 

actuator force 𝑓 

Configuration 

Inputs 

𝜃 = 𝜃0 𝜃1 𝜃2 𝑙 𝑇 

𝜏2 

𝑓 

𝜏 = 0 0 𝜏2 𝑓 𝑇 

Linearized equation of 
motion around 𝜃 = 0  

State-space equation 

where 

𝑥 = 0  is only equilibrium state since 𝐴 has full rank 

 Equation of Motion in Sagittal Plane 

𝑀𝜃 + 𝐺𝜃 = 𝜏 

𝑥 = 𝐴𝑥 + 𝐵𝑢 
𝑦 = 𝐶𝑥 

𝑥 = 𝜃𝑇 𝜃 𝑇
𝑇 

𝑢 = 𝜏2 𝑓 𝑇 

𝑦 = 𝜃 

 Balance Controller 

desired CoP 
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 Flat Feet vs. Geta Feet 
Sarcos robot with flat feet Sarcos robot with geta feet 

geta shoes 

 Simulation Result with Flat Feet 

 Simulation Result with Geta Feet First Hardware Trial 

Discussion 

• Accurately estimating model parameters is difficult 

• Articulated rigid body models don’t capture many 
aspects of humanoid robot dynamics 

– Joint friction, backlash 

– Link deformation 

 

• What is the right level of detail for 

– Control 

– Simulation 


