Robotics and Animatronics in Disney Lecture 2: Geometric Algorithms for Robotics Katsu Yamane kyamane@disneyresearch.com Yu Zheng Pittsburgh yu.zheng@disneyresearch.com

Geometric Problems in Robotics

- Grasping / locomotion
 - Feasible total contact wrench is a convex set in 6D space
 - Contact force optimization
 - Grasp quality

Geometric Problems in Robotics

- Collision detection / distance computation
 - Most algorithms deal with polygon models
 - Lose global shape information
 - Large data for accurate representation
 - CAD software work with parametric surfaces (NURBS etc.)

Outline

- Contact force optimization in grasping
 - Basic concepts for geometry-based algorithms
 - Introduction to ray-shooting algorithms
- Grasp evaluation
 - Compute the largest inclusion in 6D convex set
- Distance computation
- Generalized distance
- Compute the minimum scaling factor for two convex objects to touch

🚰 ຟີເຣທຮຸ Research, Pittsburg

ch Pitts

Contact Force Optimization: test 1

Relative error of each algorithm to minimize σ_{L_1}

λ	GJK-based	IE	ZC-based	Bi-GJK	ZC-IE	Active-Set
10^{-1}	6.86×10^{-16}	4.93×10^{-6}	0	0	0	3.63×10^{-9}
10^{-2}	1.35×10^{-14}	1.98×10^{-6}	0	1.83×10^{-16}	0	1.65×10^{-6}
10^{-3}	1.38×10^{-13}	5.38×10^{-6}	6.88×10^{-14}	6.91×10^{-14}	6.88×10^{-14}	2.88×10^{-8}
10^{-4}	0	2.84×10^{-6}	6.89×10^{-13}	6.89×10^{-13}	6.89×10^{-13}	3.92×10^{-3}
10-5	6.89×10^{-12}	infeasible	infeasible	infeasible	infeasible	1.09×10^{-1}
10^{-6}	infeasible	infeasible	infeasible	infeasible	infeasible	infeasible

Relative error of each algorithm to minimize σ_{L_∞}

λ	GJK-based	IE	ZC-based	Bi-GJK	ZC-IE	Active-Set
10^{-1}	0	6.53×10^{-6}	0	0	0	7.50×10^{-9}
10^{-2}	0	5.49×10^{-6}	0	6.96×10^{-15}	0	1.18×10^{-8}
10^{-3}	1.38×10^{-13}	5.19×10^{-6}	1.38×10^{-13}	1.38×10^{-13}	1.38×10^{-13}	5.63×10^{-6}
10^{-4}	0	5.39×10^{-6}	0	0	0	9.65×10^{-5}
10^{-5}	1.38×10^{-11}	infeasible	infeasible	infeasible	infeasible	3.00×10^{-4}
10^{-6}	1.50×10^{-16}	infeasible	infeasible	infeasible	infeasible	1.70×10^{-3}
					😿 Đĩai	ερ Research, Pit

Summary

- Four geometry-based algorithms for solving the rayshooting problem
 - GJK-based
 - ZC-based
 - Internal Expanding (IE)
 - ZC-IE hybrid
- Efficient and accurate contact force optimization by rayshooting and geometry-based algorithms

💑 ြອເຣຍອອກເດີນ, Pittsbur

Summary

 Proposed the Active Grasp Force Efficiency (A-GFE) measure that considers hand mechanism/configuration

DisNED Research, Pittsb

 Developed an accurate and efficient algorithm for computing the generalized penetration distance, including the (A-)GFE measure

Summary

- Generalized distance: minimum scaling factor for two convex objects to touch
- A geometry-based algorithm for efficient computation of the generalized distance

Diswap Research, Pittsb

Discussion

- Advantages of geometry-based algorithms
 - Global optimum
 - Fast
 - Consists of a few basic geometric computation
 - Accuracy comparable to standard numerical optimization
- Applications
 - Planning
 - Contact simulation
 - Grasp analysis

🗿 Diswep Research, Pittsbur