
7/21/2013

1

Robotics and Animatronics in Disney
Lecture 1a: Humanoid Robot Dynamics

Katsu Yamane

kyamane@disneyresearch.com

Goals

• Introduce the basics of humanoid robot dynamics

– Forward dynamics

– Inverse dynamics

• Focus on issues specific to humanoid robots

– Floating base

– Contacts

General Robot Dynamics

General Robot Dynamics

• Force/torque ↔ acceleration

• cf. Statics: position/orientation only

– Gravity, static balance, center of mass

Joint torques

Joint accelerations

Forward dynamics Inverse dynamics

Equation of Motion

𝑀 𝜃 𝜃 + 𝑐 𝜃, 𝜃 + 𝑔 𝜃 = 𝜏𝐺

Equation of motion:

Inertial forces

Centrifugal + Coriolis forces

Gravitational forces

Generalized forces

𝑁𝐺 : degrees of freedom (DOF)
Number of variables required to uniquely determine the pose

𝜃, 𝜏𝐺 ∈ ℝ𝑁𝐺

Humanoid Robot Model

Floating base

Link

Joint

3 translations + 3 rotations → 6 DOF

𝑁𝐽 joints → 𝑁𝐽 DOF

𝑁𝐺 = 𝑁𝐽 + 6

7/21/2013

2

What Determines Humanoid Motion

Floating base: usually not actuated

Link: mass, inertia, local center of mass

Joint: actuator torques

Contact forces

Humanoid Robot Dynamics

• Many joints (𝑁𝐺 > 30)

• Contacts enforce kinematic constraints

• Floating base is not actuated

• Contact forces are subject to unilateral constraints

– Normal force must be repelling (cannot pull each other)

– Coulomb friction constraint

Humanoid Robot Dynamics

𝑀 𝜃 𝜃 + 𝑐 𝜃, 𝜃 + 𝑔 𝜃 = 𝜏𝐺

𝐽𝐶𝜃 = 0 𝐽𝐶𝜃 + 𝐽𝐶 𝜃 = 0

Equation of motion:

Contact constraints:

→

Joint torques Contact forces

𝑆𝑇 =

0

1

1

6

𝑁𝐽

𝑁𝐽

1
⋱

Unactuated base:

= 𝑆𝑇𝜏 + 𝐽𝐶
𝑇𝑓𝐶

How to Compute

• Lagrangian mechanics

– Gives analytical expression

– Computationally expensive

• More efficient numerical algorithms

Numerical Inverse Dynamics

𝑀 𝜃 𝜃 + 𝑐 𝜃, 𝜃 + 𝑔 𝜃 = 𝜏𝐺

Newton-Euler Formulation [Orin et al. 1979]

• Computes 𝜏𝐺 for given 𝜃, 𝜃 , 𝜃

• Idea: the end link receives force/moment from only one joint

…

Newton-Euler Formulation

(1) Compute linear/angular accelerations of each link
(forward kinematics)

 → Total force/moment applied to each link

(2) Compute joint force/moment

(1)

(2)

…

7/21/2013

3

Forward Dynamics

• Given 𝜃, 𝜃 , 𝜏𝐺 → compute 𝜃

• If 𝑀, 𝑐, 𝑔 are known

𝜃 = 𝑀−1 𝜏𝐺 − 𝑐 − 𝑔

𝑀 𝜃 𝜃 + 𝑐 𝜃, 𝜃 + 𝑔 𝜃 = 𝜏𝐺

Unit Vector Method

1. Set 𝜃 = 0 and compute inverse dynamics → 𝜏𝐺 = 𝑐 + 𝑔

2. Set 𝑖-th element of 𝜃 to 1 and the rest to 0

3. Compute inverse dynamics

→ 𝜏𝐺 = 𝑚𝑖 + 𝑐 + 𝑔 (𝑚𝑖 is the 𝑖-th column of 𝑀)

→ 𝑚𝑖 = 𝜏𝐺 − 𝑐 − 𝑔

4. Repeat step 2, 3 for 𝑖 = 1, … , 𝑁𝐺 → 𝑀

Cost: 𝑂 𝑁2

[Walker and Orin 1982]

𝑂 𝑁 Forward Dynamics Algorithms

• Articulated-Body Algorithm [Featherstone 1987]

• Divide-and-Conquer Algorithms [Featherstone 1999]

• Assembly-Disassembly Algorithm [Yamane and Nakamura 2003]

• The last two can be parallelized

Inverse Dynamics of Humanoid
Robots

Inverse Dynamics

𝑀 𝜃 𝜃 + 𝑐 𝜃, 𝜃 + 𝑔 𝜃 = 𝑆𝑇𝜏 + 𝐽𝐶
𝑇𝑓𝐶

• Given 𝜃, 𝜃 , 𝜃 → compute 𝜏 and 𝑓𝐶

• Applications

– Check if a motion is feasible

– Trajectory optimization

• Problems

– Joint accelerations may not satisfy contact constraints

– Contact forces may not be feasible

– Contact forces may not be unique

Inverse Dynamics

Use the structure of 𝑆𝑇:

0

1

1

6

𝑁𝐽

𝑁𝐽

1
⋱

𝑀 𝜃 𝜃 + 𝑐 𝜃, 𝜃 + 𝑔 𝜃 = 𝑆𝑇𝜏 + 𝐽𝐶
𝑇𝑓𝐶

𝑀1𝜃 + 𝑐1 + 𝑔1 = 0 + 𝐽𝐶1
𝑇 𝑓𝐶

𝑀2𝜃 + 𝑐2 + 𝑔2 = 𝜏 + 𝐽𝐶2
𝑇 𝑓𝐶

Top 6 rows

The rest

7/21/2013

4

Computing the Contact Forces

• Constraints on contact force

– Normal forces at all contact points must be repelling ↔
Center of pressure (CoP) or zero-moment point (ZMP)
must be in the contact area

– Friction

Computing the Contact Forces

• Naïve solution: 𝑓𝐶 = 𝐽𝐶1
#𝑇 𝑀1𝜃 + 𝑐1 + 𝑔1

– Contact forces may not satisfy the constraints

– Weigh the contact friction and moment terms [Yamane and
Hodgins 2009]

• Force data and quadratic programming [Yamane et al. 2005]

• Contact force optimization with geometric algorithms:
Lecture 2 [Zheng and Yamane 2012]

Humanoid Robot Simulation with
Contacts

Simulation without Contacts

Forward
dynamics

Controller
(Policy)

Integration

Reference
Joint

accelerations
Control
input Robot state

Simulation with Contacts

Forward
dynamics

Controller
(Policy)

Integration

Reference
Joint

accelerations
Control
input Robot state

Collision
detection

Contact force
solver

Contact forces

Contact points

Contact Force Solvers

• Independent of joint torques

– Spring-damper model

• Dependent on joint torques

– Rigid-body (constraint-based) models

– Impulse-based model

7/21/2013

5

Independent of Joint Torques

Spring-damper (penalty-based) model

𝑓 = −𝑘𝑝𝑑 − 𝑘𝑑𝑑

• Compute contact forces directly from current state

• Easy to implement

• Difficult to find appropriate parameters (𝑘𝑝 , 𝑘𝑑)

• Requires small integration timestep

𝑑

𝑓

Dependent on Joint Torques

Impulse-based models [Mirtich 1995]

– Apply Poisson’s collision model

– Good for handling frequent collisions

– Stacking represented by many microcollisions

Dependent on Joint Torques

Rigid-body (constraint-based) models

• Usually formulated as linear complementarity problem (LCP)

– Acceleration/force

 [Lötstedt 1982] [Baraff 1989] [Baraff 1994]

– Velocity/impulse after implicit integration

 [Anitescu and Potra 1997] [Stewart and Trinkle 2000]

• Comparison to penalty-based models

– Numerically stable

– Difficult to solve

Rigid-Body Models

Linear complimentarity problem:

For given 𝑀, 𝑞, obtain 𝑤, 𝑧 that satisfy

𝑤 = 𝑀𝑧 + 𝑞

𝑤 ≥ 0, 𝑧 ≥ 0,𝑤𝑇𝑧 = 0 (𝑤 ≥ 0 ⊥ 𝑧 ≥ 0)

Contacts as LCP

2D point mass, normal direction

discretize and integrate

rearrange to LCP form

(equation of motion)

(complementarity condition)

solution

𝑚

𝑣

𝑓𝑁

𝑣𝑡+1

𝑚𝑣 = 𝑓𝑁 −𝑚𝑔

𝑚 𝑣𝑡+1 − 𝑣𝑡 = 𝑓𝑁 −𝑚𝑔 ∆𝑡

𝑣𝑡+1 =
∆𝑡

𝑚
𝑓𝑁 + 𝑣𝑡 − 𝑔∆𝑡

𝑓𝑁 ≥ 0 ⊥ 𝑣𝑡+1 ≥ 0 𝑓𝑁

Contacts as LCP

Tangential direction (friction)

Complementarity condition for 𝑢𝑡+1 and 𝑓𝑇?

𝑚

𝑢 𝑓𝑇

𝑢𝑡+1 =
∆𝑡

𝑚
𝑓𝑇 + 𝑢𝑡

𝑓𝑇

𝑓𝑁

𝑓𝑇

𝜇𝑓𝑁

𝑢𝑡+1

−𝜇𝑓𝑁

7/21/2013

6

Contacts as LCP

Additional parameters

• 𝜆 ≥ 0: magnitude of 𝑢𝑡+1

• 𝑎 ≥ 0: magnitude of 𝑓𝑁

• 𝑏1, 𝑏2 ≥ 0: magnitude of 𝑓𝑇 in +/- directions
𝑓𝑇 = 𝑏1 − 𝑏2

𝑓𝑁

𝑎

𝑏1 𝑏2
𝑓𝑇

𝜇𝑎 − 1 1
𝑏1
𝑏2

≥ 0 ⊥ 𝜆 ≥ 0

1
−1

𝑢𝑡+1 +
1
1

 𝜆 ≥ 0 ⊥
𝑏1
𝑏2

≥ 0

Contacts as LCP

1. 𝑢𝑡+1 > 0, 𝑓𝑇 = −𝜇𝑎 < 0 𝜆 = 𝑢𝑡+1, 𝑏1 = 0, 𝑏2 = 𝜇𝑎

2. 𝑢𝑡+1 = 0,−𝜇𝑎 < 𝑓𝑇 < 𝜇𝑎 𝜆 = 0, 𝑏1 − 𝑏2 = 𝑓𝑇

3. 𝑢𝑡+1 < 0, 𝑓𝑇 = 𝜇𝑎 > 0 𝜆 = −𝑢𝑡+1, 𝑏1 = 𝜇𝑎, 𝑏2 = 0

1.

2.

3.

𝜇𝑎 − 1 1
𝑏1
𝑏2

≥ 0 ⊥ 𝜆 ≥ 0

1
−1

𝑢𝑡+1 +
1
1

 𝜆 ≥ 0 ⊥
𝑏1
𝑏2

≥ 0

𝑢𝑡+1

𝜇𝑎

−𝜇𝑎
𝑓𝑇

Putting Everything Together

Unknowns: 𝑧 = 𝑎 𝑏1 𝑏2 𝜆 𝑇

Eliminate 𝑣𝑡+1 and 𝑢𝑡+1 using the equation of motion

𝑤 =

∆𝑡 𝑚 0 0 0
0 ∆𝑡 𝑚 −∆𝑡 𝑚 1
0 −∆𝑡 𝑚 ∆𝑡 𝑚 1
𝜇 −1 −1 0

𝑧 +

𝑣𝑡 − 𝑔∆𝑡
𝑢𝑡
−𝑢𝑡
0

𝑤 ≥ 0 ⊥ 𝑧 ≥ 0

Solving LCPs

Pivot-based method

Optimization

Iterative method

Solving LCPs

Pivot-based method

– Identify inactive (or vanishing) constraints

– 2𝑛possibilities for 𝑛 contact points

– No “intermediate” solution

– General LCPs [Lemke and Howson 1964] [Cottle and Dantzig 1968]
[Murty 1988]

– Application to contacts [Lloyd 2005]

– Numerical robustness [Yamane and Nakamura 2008]

– Heuristics for contacts [Baraff 1989] [Baraff 1994]

Solving LCPs

Pivot-based method

Divide 𝑤, 𝑧 into two parts:
𝑤𝛼

𝑤𝛽
= 𝑀

𝑧𝛼
𝑧𝛽

+ 𝑞

such that 𝑤𝛼 and 𝑧𝛼 contain the same set of indices

Pivoted equation:
𝑧𝛼
𝑤𝛽

= 𝑀′
𝑤𝛼

𝑧𝛽
+ 𝑞′

If 𝑞′ ≥ 0, the solution is
𝑧𝛼
𝑤𝛽

= 𝑞′,
𝑤𝛼

𝑧𝛽
=0

(Confirm 𝑤 ≥ 0 ⊥ 𝑧 ≥ 0)

𝑤 = 𝑀𝑧 + 𝑞,𝑤 ≥ 0 ⊥ 𝑧 ≥ 0

7/21/2013

7

Lemke Algorithm [Lemke and Howson 1964]

• One of pivot-based methods

• Introduce an auxiliary variable 𝑧0

• 𝑤 = 𝑀
𝑧
𝑧0

+ 𝑞

• Overview

1. Swap 𝑤𝑟 and 𝑧0 such that 𝑞′ ≥ 0

2. Continue swapping keeping 𝑞′ ≥ 0

3. Terminate when 𝑧0 comes back to right-hand side

𝑀 = 𝑀 𝑐

𝑐 = 1 1 … 1 𝑇

Solving LCPs

Convert to a quadratic program [Lötstedt 1982]

Subject to 𝑀𝑧 + 𝑞 ≥ 0,𝑤 ≥ 0, 𝑧 ≥ 0

Minimize 𝑧𝑇 𝑀𝑧 + 𝑞

𝑤 = 𝑀𝑧 + 𝑞

𝑤 ≥ 0 ⊥ 𝑧 ≥ 0

Solving LCPs

Non-smooth Newton method [Ralph 1994] [Ferris et al. 1998]

– Fischer-Burmeister function 𝜙 𝑎, 𝑏 = 𝑎2 + 𝑏2 − 𝑎 − 𝑏

 → 𝜙 = 0 iff 𝑎 ≥ 0 ⊥ 𝑏 ≥ 0

– Apply Newton method with proved convergence

– Application to nonlinear contact model [Todorov 2010]

Solving LCPs

Iterative method [Jourdan 1998] [Kokkevis 2004]

• Extension of iterative algorithms for solving linear
equations (e.g., Gauss-Seidel method)

• Relatively easy to implement

• Can stop at any iteration

• Guaranteed to converge only when 𝑀 is SPD, which is
not the case with frictional contacts

• But it does converge in many practical cases

Collision Detection

• Input

– Polygon approximation

– Parameteric surface representation

• Outputs

– Contact point locations

– Contact normal

• Sometimes required (c.f. spring-damper contact model)

– Distance/depth

Collision Detection Algorithms

• Mostly rigid bodies (no deformation)

• Algorithms for general polygon models

– Oriented bounding box (OBB)

– Many useful libraries from UNC Gamma Group

 http://gamma.cs.unc.edu/research/collision/

• Algorithms for parameteric surface representation

– Geometry-based algorithms → Lecture 2

http://gamma.cs.unc.edu/research/collision/

7/21/2013

8

OBB-Based Collision Detection

1. Triangulate the polygons

2. Recursively partition the polygon mesh into oriented
bounding boxes (OBBTree [Gottschalk et al. 1996])

OBB-Based Collision Detection

3. Recursively check collisions between OBBs

OBB-Based Collision Detection

4. Check collisions between triangles

1) Check if each vertex of triangle B is above or below the
plane including triangle A. If all vertices are on the same
side, A and B are not colliding.

2) Check if an edge of B is passing A.

3) Check if projection of a vertex of B is inside A

 basic operation: project the vertices onto a vector

 if the projections from two triangles are separated, then
there is no collision

A B

OBB-Based Collision Detection

Problems

• Publicly available codes do not give normal vector

• No global shape information

Contact Normal

Extension [Yamane and Nakamura 2006]

– Consider all possible displacements to separate the
triangles

– Choose the one with the smallest depth

– Consider the neighboring triangles

Available Libraries/Software

Game engines

– ODE http://ode.org/

• approximated friction model

• rigid bodies + constraints: artificial parameters to maintain
constraints

– PhysX: LCP (iterative solver) + penalty-based?
http://www.nvidia.com/object/physx_new.html

• works on PPU (Physics Processing Unit)

– Havok http://www.havok.com/

http://ode.org/
http://www.nvidia.com/object/physx_new.html
http://www.havok.com/

7/21/2013

9

Available Libraries/Software

General dynamics simulation

– SD/Fast: http://www.sdfast.com/

• generates the code for a specific model

– OpenHRP3: iterative and Lemke solvers
http://www.openrtp.jp/openhrp3/en/index.html

• Nice UI but heavy

• Link to necessary source code

– Webots

 http://www.cyberbotics.com/

Comparison with Experiments
[Yamane, Nakamura, Yamamoto IROS 2008]

Comparison with Experiments

with closed loop (toe joint)

Non-Humanoid Examples

Discussion

• Real robots are different from simulation models

• A controller that works in simulation does not always
work on real robot

• Is simulation useful at all?

– Simulation gives baseline (ideal) results

– Compare experiments with simulation

– Compare different controllers/parameters

http://www.sdfast.com/
http://www.openrtp.jp/openhrp3/en/index.html
http://www.cyberbotics.com/

