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Goals 

• Introduce the basics of humanoid robot dynamics 

– Forward dynamics 

– Inverse dynamics 

 

• Focus on issues specific to humanoid robots 

– Floating base 

– Contacts 

General Robot Dynamics 

General Robot Dynamics 

• Force/torque ↔ acceleration 

• cf. Statics: position/orientation only 

– Gravity, static balance, center of mass 

Joint torques 

Joint accelerations 

Forward dynamics Inverse dynamics 

Equation of Motion 

𝑀 𝜃 𝜃 + 𝑐 𝜃, 𝜃 + 𝑔 𝜃 = 𝜏𝐺 

Equation of motion: 

Inertial forces 

Centrifugal + Coriolis forces 

Gravitational forces 

Generalized forces 

𝑁𝐺 : degrees of freedom (DOF) 
Number of variables required to uniquely determine the pose  

𝜃, 𝜏𝐺 ∈ ℝ𝑁𝐺 

Humanoid Robot Model 

Floating base 

Link 

Joint 

3 translations + 3 rotations → 6 DOF 

𝑁𝐽 joints → 𝑁𝐽 DOF 

𝑁𝐺 = 𝑁𝐽 + 6 
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What Determines Humanoid Motion 

Floating base: usually not actuated 

Link: mass, inertia, local center of mass 

Joint: actuator torques 

Contact forces 

Humanoid Robot Dynamics 

• Many joints (𝑁𝐺 > 30) 

• Contacts enforce kinematic constraints 

• Floating base is not actuated 

• Contact forces are subject to unilateral constraints 

– Normal force must be repelling (cannot pull each other) 

– Coulomb friction constraint 

Humanoid Robot Dynamics 

𝑀 𝜃 𝜃 + 𝑐 𝜃, 𝜃 + 𝑔 𝜃 = 𝜏𝐺 

𝐽𝐶𝜃 = 0 𝐽𝐶𝜃 + 𝐽𝐶 𝜃 = 0 

Equation of motion: 

Contact constraints: 

→ 

Joint torques Contact forces 

𝑆𝑇 = 

0 

1 

1 

6 

𝑁𝐽 

𝑁𝐽 

1 
⋱ 

Unactuated base: 

= 𝑆𝑇𝜏 + 𝐽𝐶
𝑇𝑓𝐶 

How to Compute 

• Lagrangian mechanics 

– Gives analytical expression 

– Computationally expensive 

 

• More efficient numerical algorithms 

Numerical Inverse Dynamics 

𝑀 𝜃 𝜃 + 𝑐 𝜃, 𝜃 + 𝑔 𝜃 = 𝜏𝐺 

Newton-Euler Formulation [Orin et al. 1979] 

• Computes 𝜏𝐺 for given 𝜃, 𝜃 , 𝜃  

• Idea: the end link receives force/moment from only one joint 

… 

Newton-Euler Formulation 

(1) Compute linear/angular accelerations of each link 
(forward kinematics) 

 → Total force/moment applied to each link 

(2) Compute joint force/moment 

 
(1) 

(2) 

… 
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Forward Dynamics 

 

 

• Given 𝜃, 𝜃 , 𝜏𝐺 → compute 𝜃  

• If 𝑀, 𝑐, 𝑔 are known 

𝜃 = 𝑀−1 𝜏𝐺 − 𝑐 − 𝑔  

𝑀 𝜃 𝜃 + 𝑐 𝜃, 𝜃 + 𝑔 𝜃 = 𝜏𝐺 

Unit Vector Method 

1. Set 𝜃 = 0 and compute inverse dynamics → 𝜏𝐺 = 𝑐 + 𝑔 

2. Set 𝑖-th element of 𝜃  to 1 and the rest to 0 

3. Compute inverse dynamics 

→ 𝜏𝐺 = 𝑚𝑖 + 𝑐 + 𝑔 (𝑚𝑖 is the 𝑖-th column of 𝑀) 

→ 𝑚𝑖 = 𝜏𝐺 − 𝑐 − 𝑔 

4. Repeat step 2, 3 for 𝑖 = 1, … , 𝑁𝐺 → 𝑀 

 

Cost: 𝑂 𝑁2  

[Walker and Orin 1982] 

𝑂 𝑁  Forward Dynamics Algorithms 

• Articulated-Body Algorithm [Featherstone 1987] 

• Divide-and-Conquer Algorithms [Featherstone 1999] 

• Assembly-Disassembly Algorithm [Yamane and Nakamura 2003] 

 

• The last two can be parallelized 

Inverse Dynamics of Humanoid 
Robots 

Inverse Dynamics 

𝑀 𝜃 𝜃 + 𝑐 𝜃, 𝜃 + 𝑔 𝜃 = 𝑆𝑇𝜏 + 𝐽𝐶
𝑇𝑓𝐶 

• Given 𝜃, 𝜃 , 𝜃  → compute 𝜏 and 𝑓𝐶  

• Applications 

– Check if a motion is feasible 

– Trajectory optimization 

• Problems  

– Joint accelerations may not satisfy contact constraints 

– Contact forces may not be feasible 

– Contact forces may not be unique 

Inverse Dynamics 

 

Use the structure of 𝑆𝑇: 

0 

1 

1 

6 

𝑁𝐽 

𝑁𝐽 

1 
⋱ 

𝑀 𝜃 𝜃 + 𝑐 𝜃, 𝜃 + 𝑔 𝜃 = 𝑆𝑇𝜏 + 𝐽𝐶
𝑇𝑓𝐶 

𝑀1𝜃 + 𝑐1 + 𝑔1 = 0 + 𝐽𝐶1
𝑇 𝑓𝐶 

𝑀2𝜃 + 𝑐2 + 𝑔2 = 𝜏 + 𝐽𝐶2
𝑇 𝑓𝐶 

Top 6 rows 

The rest 
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Computing the Contact Forces 

• Constraints on contact force 

– Normal forces at all contact points must be repelling ↔ 
Center of pressure (CoP) or zero-moment point (ZMP) 
must be in the contact area 

– Friction 

 

 

Computing the Contact Forces 

• Naïve solution: 𝑓𝐶 = 𝐽𝐶1
#𝑇 𝑀1𝜃 + 𝑐1 + 𝑔1  

– Contact forces may not satisfy the constraints 

– Weigh the contact friction and moment terms [Yamane and 
Hodgins 2009] 

• Force data and quadratic programming [Yamane et al. 2005] 

• Contact force optimization with geometric algorithms: 
Lecture 2 [Zheng and Yamane 2012] 

 

Humanoid Robot Simulation with 
Contacts 

Simulation without Contacts 

Forward 
dynamics 

Controller 
(Policy) 

Integration 

Reference 
Joint 

accelerations 
Control 
input Robot state 

Simulation with Contacts 

Forward 
dynamics 

Controller 
(Policy) 

Integration 

Reference 
Joint 

accelerations 
Control 
input Robot state 

Collision 
detection 

Contact force 
solver 

Contact forces 

Contact points 

Contact Force Solvers 

• Independent of joint torques 

– Spring-damper model 

 

• Dependent on joint torques 

– Rigid-body (constraint-based) models 

– Impulse-based model 
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Independent of Joint Torques 

Spring-damper (penalty-based) model 

𝑓 = −𝑘𝑝𝑑 − 𝑘𝑑𝑑  

• Compute contact forces directly from current state 

• Easy to implement 

• Difficult to find appropriate parameters (𝑘𝑝 , 𝑘𝑑) 

• Requires small integration timestep 

𝑑 

𝑓 

Dependent on Joint Torques 

Impulse-based models [Mirtich 1995] 

– Apply Poisson’s collision model 

– Good for handling frequent collisions 

– Stacking represented by many microcollisions 

 

Dependent on Joint Torques 

Rigid-body (constraint-based) models 

• Usually formulated as linear complementarity problem (LCP) 

– Acceleration/force 

 [Lötstedt 1982] [Baraff 1989] [Baraff 1994] 

– Velocity/impulse after implicit integration 

 [Anitescu and Potra 1997] [Stewart and Trinkle 2000] 

 

• Comparison to penalty-based models 

– Numerically stable 

– Difficult to solve 

Rigid-Body Models 

Linear complimentarity problem: 

For given 𝑀, 𝑞, obtain 𝑤, 𝑧 that satisfy 

𝑤 = 𝑀𝑧 + 𝑞 

𝑤 ≥ 0, 𝑧 ≥ 0,𝑤𝑇𝑧 = 0 (𝑤 ≥ 0 ⊥ 𝑧 ≥ 0) 

Contacts as LCP 

2D point mass, normal direction 

 

discretize and integrate 

rearrange to LCP form 

(equation of motion) 

(complementarity condition) 

solution 

𝑚 

𝑣 

𝑓𝑁 

𝑣𝑡+1 

𝑚𝑣 = 𝑓𝑁 −𝑚𝑔 

𝑚 𝑣𝑡+1 − 𝑣𝑡 = 𝑓𝑁 −𝑚𝑔 ∆𝑡 

𝑣𝑡+1 =
∆𝑡

𝑚
𝑓𝑁 + 𝑣𝑡 − 𝑔∆𝑡 

𝑓𝑁 ≥ 0 ⊥  𝑣𝑡+1 ≥ 0 𝑓𝑁 

Contacts as LCP 

Tangential direction (friction) 

Complementarity condition for 𝑢𝑡+1 and 𝑓𝑇? 

𝑚 

𝑢 𝑓𝑇 

𝑢𝑡+1 =
∆𝑡

𝑚
𝑓𝑇 + 𝑢𝑡 

𝑓𝑇 

𝑓𝑁 

𝑓𝑇 

𝜇𝑓𝑁 

𝑢𝑡+1 

−𝜇𝑓𝑁 



7/21/2013 

6 

Contacts as LCP 

Additional parameters 

• 𝜆 ≥ 0: magnitude of 𝑢𝑡+1  

• 𝑎 ≥ 0: magnitude of 𝑓𝑁 

• 𝑏1, 𝑏2 ≥ 0: magnitude of 𝑓𝑇 in +/- directions 
𝑓𝑇 = 𝑏1 − 𝑏2  

𝑓𝑁 

𝑎 

𝑏1 𝑏2 
𝑓𝑇 

𝜇𝑎 − 1 1
𝑏1
𝑏2

≥ 0 ⊥  𝜆 ≥ 0 

1
−1

𝑢𝑡+1 +
1
1

 𝜆 ≥ 0 ⊥  
𝑏1
𝑏2

≥ 0 

Contacts as LCP 

1.  𝑢𝑡+1 > 0, 𝑓𝑇 = −𝜇𝑎 < 0     𝜆 = 𝑢𝑡+1, 𝑏1 = 0, 𝑏2 = 𝜇𝑎  

2.  𝑢𝑡+1 = 0,−𝜇𝑎 < 𝑓𝑇 < 𝜇𝑎 𝜆 = 0, 𝑏1 − 𝑏2 = 𝑓𝑇 

3.  𝑢𝑡+1 < 0, 𝑓𝑇 = 𝜇𝑎 > 0 𝜆 = −𝑢𝑡+1, 𝑏1 = 𝜇𝑎, 𝑏2 = 0 

1. 

2. 

3. 

𝜇𝑎 − 1 1
𝑏1
𝑏2

≥ 0 ⊥  𝜆 ≥ 0 

1
−1

𝑢𝑡+1 +
1
1

 𝜆 ≥ 0 ⊥  
𝑏1
𝑏2

≥ 0 

𝑢𝑡+1 

𝜇𝑎 

−𝜇𝑎 
𝑓𝑇 

Putting Everything Together 

Unknowns: 𝑧 = 𝑎 𝑏1 𝑏2 𝜆 𝑇 

Eliminate 𝑣𝑡+1 and 𝑢𝑡+1 using the equation of motion 

𝑤 =

∆𝑡 𝑚 0 0 0
0 ∆𝑡 𝑚 −∆𝑡 𝑚 1
0 −∆𝑡 𝑚 ∆𝑡 𝑚 1
𝜇 −1 −1 0

𝑧 +

𝑣𝑡 − 𝑔∆𝑡
𝑢𝑡
−𝑢𝑡
0

 

𝑤 ≥ 0 ⊥ 𝑧 ≥ 0 

Solving LCPs 

Pivot-based method 

 

Optimization 

 

Iterative method 

 

 

 

 

Solving LCPs 

Pivot-based method 

– Identify inactive (or vanishing) constraints 

– 2𝑛possibilities for 𝑛 contact points 

– No “intermediate” solution 

– General LCPs [Lemke and Howson 1964] [Cottle and Dantzig 1968] 
[Murty 1988] 

– Application to contacts [Lloyd 2005] 

– Numerical robustness [Yamane and Nakamura 2008] 

– Heuristics for contacts [Baraff 1989] [Baraff 1994] 

Solving LCPs 

Pivot-based method 

 

 

 

 

 

 

 

Divide 𝑤, 𝑧 into two parts: 
𝑤𝛼 

𝑤𝛽 
= 𝑀

𝑧𝛼
𝑧𝛽

+ 𝑞 

such that 𝑤𝛼  and 𝑧𝛼 contain the same set of indices 

Pivoted equation: 
𝑧𝛼
𝑤𝛽 

= 𝑀′
𝑤𝛼 

𝑧𝛽
+ 𝑞′ 

If 𝑞′ ≥ 0, the solution is 
𝑧𝛼
𝑤𝛽 

= 𝑞′, 
𝑤𝛼 

𝑧𝛽
=0 

(Confirm 𝑤 ≥ 0 ⊥ 𝑧 ≥ 0) 

𝑤 = 𝑀𝑧 + 𝑞,𝑤 ≥ 0 ⊥ 𝑧 ≥ 0 
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Lemke Algorithm [Lemke and Howson 1964] 

• One of pivot-based methods 

• Introduce an auxiliary variable 𝑧0 

• 𝑤 = 𝑀 
𝑧
𝑧0

+ 𝑞 

 

• Overview 

1. Swap 𝑤𝑟 and 𝑧0 such that 𝑞′ ≥ 0 

2. Continue swapping keeping 𝑞′ ≥ 0 

3. Terminate when 𝑧0 comes back to right-hand side 

𝑀 = 𝑀 𝑐  

𝑐 = 1 1 … 1 𝑇 

Solving LCPs 

Convert to a quadratic program [Lötstedt 1982] 

 

Subject to 𝑀𝑧 + 𝑞 ≥ 0,𝑤 ≥ 0, 𝑧 ≥ 0 

Minimize 𝑧𝑇 𝑀𝑧 + 𝑞  

𝑤 = 𝑀𝑧 + 𝑞 

𝑤 ≥ 0 ⊥ 𝑧 ≥ 0 

Solving LCPs 

Non-smooth Newton method [Ralph 1994] [Ferris et al. 1998] 

– Fischer-Burmeister function 𝜙 𝑎, 𝑏 = 𝑎2 + 𝑏2 − 𝑎 − 𝑏 

 → 𝜙 = 0 iff 𝑎 ≥ 0 ⊥ 𝑏 ≥ 0 

– Apply Newton method with proved convergence 

– Application to nonlinear contact model [Todorov 2010] 

Solving LCPs 

Iterative method [Jourdan 1998] [Kokkevis 2004] 

• Extension of iterative algorithms for solving linear 
equations (e.g., Gauss-Seidel method) 

• Relatively easy to implement 

• Can stop at any iteration 

• Guaranteed to converge only when 𝑀 is SPD, which is 
not the case with frictional contacts 

• But it does converge in many practical cases 

Collision Detection 

• Input 

– Polygon approximation 

– Parameteric surface representation 

• Outputs 

– Contact point locations 

– Contact normal 

• Sometimes required (c.f. spring-damper contact model) 

– Distance/depth 

Collision Detection Algorithms 

• Mostly rigid bodies (no deformation) 

• Algorithms for general polygon models 

– Oriented bounding box (OBB) 

– Many useful libraries from UNC Gamma Group 

 http://gamma.cs.unc.edu/research/collision/ 

• Algorithms for parameteric surface representation 

– Geometry-based algorithms → Lecture 2 

http://gamma.cs.unc.edu/research/collision/
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OBB-Based Collision Detection 

1. Triangulate the polygons 

2. Recursively partition the polygon mesh into oriented 
bounding boxes (OBBTree [Gottschalk et al. 1996]) 

 

 

OBB-Based Collision Detection 

3. Recursively check collisions between OBBs 

OBB-Based Collision Detection 

4. Check collisions between triangles 

1) Check if each vertex of triangle B is above or below the 
plane including triangle A.  If all vertices are on the same 
side, A and B are not colliding. 

2) Check if an edge of B is passing A. 

3) Check if projection of a vertex of B is inside A 

 basic operation: project the vertices onto a vector 

 if the projections from two triangles are separated, then 
there is no collision 

A B 

OBB-Based Collision Detection 

Problems 

• Publicly available codes do not give normal vector 

• No global shape information 

 

 

 

Contact Normal 

Extension [Yamane and Nakamura 2006] 

– Consider all possible displacements to separate the 
triangles 

– Choose the one with the smallest depth 

– Consider the neighboring triangles 

Available Libraries/Software 

Game engines 

– ODE http://ode.org/ 

• approximated friction model 

• rigid bodies + constraints: artificial parameters to maintain 
constraints 

– PhysX: LCP (iterative solver) + penalty-based? 
http://www.nvidia.com/object/physx_new.html 

• works on PPU (Physics Processing Unit) 

– Havok http://www.havok.com/ 

 

http://ode.org/
http://www.nvidia.com/object/physx_new.html
http://www.havok.com/
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Available Libraries/Software 

General dynamics simulation 

– SD/Fast: http://www.sdfast.com/ 

• generates the code for a specific model 

– OpenHRP3: iterative and Lemke solvers 
http://www.openrtp.jp/openhrp3/en/index.html 

• Nice UI but heavy 

• Link to necessary source code 

– Webots 

 http://www.cyberbotics.com/ 

Comparison with Experiments 
[Yamane, Nakamura, Yamamoto IROS 2008] 

Comparison with Experiments 

with closed loop (toe joint) 

 

Non-Humanoid Examples 

Discussion 

• Real robots are different from simulation models 

• A controller that works in simulation does not always 
work on real robot 

• Is simulation useful at all? 

– Simulation gives baseline (ideal) results 

– Compare experiments with simulation 

– Compare different controllers/parameters 

http://www.sdfast.com/
http://www.openrtp.jp/openhrp3/en/index.html
http://www.cyberbotics.com/

